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A New Maximum Principle for Impulsive First-
Order Problems
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We prove a new maximum principle for a boundary value problem for first-order
ordinary differential equations with impulses at fixed moments.

1. INTRODUCTION

It is often convenient in mechanics and in other branches of science to

consider an idealized extreme in which a force is applied for only an infinitesi-

mal amount of time, but still communicates a nonzero quantity of momentum.

This leads to the concepts of impulse function and impulsive differential

equation.

Maximum principles play a central role in the theory of differential
equations. They are used to study qualitative aspects such as existence,

uniqueness of solutions, multiplicity of solutions, stability, and order of con-

vergence of numerical schemes.

Differential equations with impulses are a basic tool to study evolution

processes that are subject to abrupt changes in their states. For instance,
many biological phenomena involving thresholds or optimal control models

in economics exhibit impulsive effects (Lakshmikantham et al., 1989;

Samoilenko and Perestyuk, 1995). Hence it is of the utmost importance to

develop a general theory for differential equations including some basic

aspects of this theory.

In this paper we study a linear impulsive differential equation and present
a new maximum principle which generalize previous known results.
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2. PRELIMINARIES

We consider the following linear problem:

(LP) 5
u8(t) 1 l u (t) 5 s (t), t Þ tk, t P J 5 [0, T ]

u (t 1
k ) 5 cku (tk)

u (0) 5 u (T ) 1 m

where l , m P R , 0 5 t0 , t1 , . . . , tp , tp 1 1 5 T, ck P R , k 5 1, . . . , p,
and s : J ® R is such that s is continuous for t Þ tk , there exist the limits

s (t 2
k ) 5 limh ® 0

2 s (tk 1 h), s (t 1
k ) 5 limh ® 0

1 s (tk 1 h), and s (t 2
k ) 5 s (tk)

for every k 5 1, . . . , p.

In order to define more precisely the concept of solution for the problem

(LP), we introduce the following spaces of functions:

PC(J ) 5 {u: J ® R ; u | (tk, tk 1 1) P C ((tk , tk 1 1)), k 5 0, 1, . . . , p,

$ u (0+), u (T 2 ), u (t 1
k ), u (t 2

k ), and u (t 2
k ) 5 u (tk), k 5 1, . . . , p}

and

PC1(J ) 5 {u P PC(J );u | (tk, tk 1 1) P C 1((tk , tk 1 1)), k 5 0, 1, . . . , p,

$ u8(0+), u8(T 2 ), u8(t 1
k ), and u8(t 2

k ), k 5 1, . . . , p}

PC(J ) and PC1(J ) are Banach spaces with the norms

|u|PC(J) 5 sup{ | u (t) | ; t P J }

and

|u|PC
1
(J) 5 |u|PC(J) 1 |u8|PC(J )

Note that

|u|PC(J) 5 sup{|uk|C(Jk); k 5 0, 1, . . . , p}, uk 5 u | Jk, Jk 5 [tk , tk 1 1]

and, in this sense, PC(J ) is equivalent to P p
k 5 0 C (Jk).

By a solution of problem (LP) we mean a function u P PC1(J ) satisfying

the conditions indicated in (LP).

In the nonimpulsive case, that is, if ck 5 1, k 5 1, . . . , p, then
u (t 1

k ) 5 u (tk) and u P C [0, T ]. It is well known that (LP), has a unique

solution for any s P C (J ) and m P R if and only if l Þ 0.

In the case l 5 0, the problem is solvable if and only if * T
0 s (s)ds 5

0. In such a case, there is an infinite number of solutions. In other words,

the only eigenvalue of u8 with periodic conditions is l 5 0 (the eigenfunctions
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being constants). We have the following maximum principle depending on

the sign of l Þ 0.

Theorem 2.1. Consider the problem (LP) with s P C (J ) and C k 5 1,

k 5 1, . . . , p:

1. If s $ 0 in J and m $ 0, then

H l . 0 Þ u $ 0

l , 0 Þ u # 0

2. If s # 0 in J and m # 0, then

H l . 0 Þ u # 0

l , 0 Þ u $ 0

This maximum principle is essential for developing the monotone itera-

tive method, a powerful theorical method, (Ladde et al., 1985), which permits

us to construct a sequence of approximate solutions converging to a solution

of the nonlinear problem

H u8(t) 5 f (t, u (t)), t P J

u (0) 5 u (T )

In the impulsive case, (LP) is not always solvable (even if l Þ 0). See the

examples in (Nieto, 1997). The next result gives precise information on
the eigenvalues in the impulsive case. It also gives an explicit formula for

the solution.

Theorem 2.2. (LP) has a unique solution for all s P PC(J ) if and only
if P p

k 5 1 ck Þ e l T.

Moreover, in this case and for l Þ 0 the solution satisfies the following

equation for every t P [0, T ]:

u (t) 5 #
T

0

g (t, s) s (s) ds 1 o
p

j 5 1

g (t, tj)(cj 2 1)u (tj) 1
m e 2 l t

1 2 e 2 l T (2.1)

where

g (t, s) 5
1

1 2 e 2 l T H e 2 l (t 2 s) if 0 # s , t # T

e 2 l (T 1 t 2 s) if 0 # t # s # T
(2.2)

Proof. Let u(0) 5 u0. With this initial condition and the two first equations

of (LP) we have a Cauchy problem which is solvable and it has a unique

solution u for each u0.
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Using the variation of parameters theorem for systems with impulses

(Theorem 2.5.1 in Lakshmikantham, et al., 1989), it is easy set up the

following expression for u (t), t P J:

u (t) 5 e 2 l tu (0) 1 #
t

0

e 2 l (t 2 s) s (s) ds 1 o
{k:0 , tk , t}

e 2 l (t 2 tk) (ck 2 1)u (tk) (2.3)

In particular, for t 5 T we have

u (T ) 5 u (0) &
p

k 5 1
cke

2 l T 1 #
t1

0
&
p

k 5 1
cke

2 l (T 2 s) s (s) ds

1 #
t2

t1

&
p

k 5 2
cke

2 l (T 2 s) s (s) ds 1 . . . 1 #
T

tp

e 2 l (T 2 s) s (s) ds (2.4)

Now, a solution of the Cauchy problem will be a solution of (LP) if and only

if satisfies the boundary condition u (0) 5 u (T ) 1 m . Then, by (2.4),

1 1 2 &
p

k 5 1
cke

2 l T 2 u (0) 5 m 1 #
t1

0
&
p

k 5 1
cke

2 l (T 2 s) s (s) ds

1 #
t2

t1

&
p

k 5 2
cke

2 l (T 2 s) s (s) ds 1 . . . 1 #
T

tp

e 2 l (T 2 s) s (s) ds

Thus, for every s P PC(J ) there exists an initial condition u (0) satisfying
the boundary condition if and only if

&
p

k 5 1
ck Þ e l T

Now, for l Þ 0 we have

u (0) 5
m

1 2 e 2 l T 1 #
T

0

e 2 l (T 2 s) s (s)

1 2 e 2 l T ds 1 o
p

k 5 1

e 2 l (T 2 tk)

1 2 e 2 l T (ck 2 1)u (tk)

and substituting this value into (2.3), we obtain the relation (2.1). n

Remark 2.1. For l Þ 0 and m 5 0 it is proved in Franco (1997) and

Nieto (1997) that u P PC1(J ) is a solution of (LP) if and only if u satisfies (2.1).

Theorem 2.1 was partially generalized to equations with impulses in
Lakshmikantham et al. (1989).

Theorem 2.3. Consider the problem (LP) with l . 0, s $ 0 in J, ck .
0, k 5 1, 2, . . . , p, m $ 0, and P p

k 5 1 cke
2 l T , 1. Then u (t) $ 0, t P J.
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But in this result there is no information about the sign of u when either

l , 0 or P p
k 5 1 cke

2 l T , 1.

We now define the operator L: D (L) ® PC(J ) by

L (u)(t) 5 u8(t), t Þ tk , L (u)(tk) 5 u8(t 2
k ), k 5 1, . . . , p

where

D (L) 5 {u P PC1(J ): u (t 1
k ) 5 cku (tk), k 5 1, . . . , p, u (0) 5 u (T )}

We observe that the problem (LP) with m 5 0 is equivalent to the abstract

equation

Lu 5 s , u P D(L)

Theorem 2.3 can be seen as a sufficient condition to assure that the operator

(L 1 l I ) is inverse positive, that is, (L 1 l I )(u) $ 0 on J implies that u $
0 on J.

Now, we introduce some definitions and results (Berman et al., 1990)

that we will be useful in the following sections.

Definition 2.1. A real p 3 p matrix Q 5 (qji) is said to be monotone if

Qx $ 0 implies x $ 0, x P R p.

Proposition 2.1 Let Q 5 (qji) P M p 3 p( R ) such that qji # 0, " i Þ j.
Then the following two conditions are equivalent:

1. Q is monotone.

2. Every principal minor of Q is positive.

The following result gives us an important inequality for piecewise

continuous functions. It is a particular case of Corollary 1.4.1 in Lakshmikan-
tham et al. (1989).

Lemma 2.1. Let s P J and let u, a P PC1(J ), l P R , and ck $ 0, k 5
1, . . . , p, constants such that

(i) u8(t) # a (t)u (t) t P [s, T ), t Þ tk

u (t 1
k ) # cku (tk), tk P [s, T )

Then we have for t P [s, T )

u (t) # u (s +) &
s , tk , t

ck exp F # t

s

a (z)dz G (2.5)

(ii) u8(t) $ a (t)u (t) t P [s, T ), t Þ tk

u (t 1
k ) $ cku (tk) tk P [s, T )

Then we have for t P [s, T ) the reverse inequality of (2.5),
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u (t) $ u (s +) &
s , tk , t

ck exp F # t

s

a (z) dz G
3. MAXIMUM PRINCIPLES VIA MONOTONE MATRICES

In this section we explain how to use monotone matrices to obtain a

maximum principle for (LP).

Lemma 3.1. Consider the problem (LP) with s (t) $ 0, t P J, and m $
0. If l . 0, and u is a solution of (LP) such that u (t 1

j ) and u (t 2
j ) are

nonnegative for j 5 1, . . . , p, then u $ 0 in J.

Proof. Let s P J such that

u (s) 5 min
t P J

{u (t)}

Suppose that u (s) , 0 (obviously s Þ tk , k 5 1, . . . , p). We first suppose
that s 5 T. Then there exists s1 P [tp , T ) such that u (s 1

1 ) 5 0, u (t) , 0, t
P (s1, T ]. The mean value theorem implies that there exists s2 P (s1, T )

such that u8(s2) , 0 and u (s2) , 0. But in this situation we obtain the

following contradiction:

0 . u8(s2) 1 l u (s2) 5 s (s2) $ 0

Now, if s 5 0, then s 5 T since m $ 0. If s P int(J ), then u8(s) 5 0, and

0 # u8(s) 1 l u (s) , 0

which is impossible. n

Remark 3.1. Lemma 3.1 is a maximum principle, but it is not practical

since it is necessary to know a priori the values of the function u at some

fixed instants t1, t2, . . . , tp. On the other hand, if ck . 0, to guarantee that

u (t 1
k ) and u (t 2

k ) are nonnegative for k 5 1, . . . , p is sufficient that u (t 2
k )

are nonnegative for k 5 1, 2, . . . , p.

Suppose that l . 0, m $ 0, and s $ 0. By Theorem 2.2 we know that

u (t) 2 o
p

i 5 1

g (t, ti)(ci 2 1)u (ti) $ 0, t P J

For the impulsive instants we obtain the following p inequalities:

u (t) 2 o
p

i 5 1

g (ti , tj)(cj 2 1)u (tj) $ 0, i 5 1, . . . , p (3.1)

We define the vector u
Ä
5 (u (t1), . . . , u (tp))

T P R p and the p 3 p matrix

Q 5 (qij ) by
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qij 5
1

1 2 e 2 l T 5
2 e 2 l (T 1 ti 2 tj) (cj 2 1) if i . j

1 2 (cj 2 1)e 2 l T if i 5 j

2 e 2 l (ti 2 tj)(cj 2 1) if i , j

Note that off-diagonal entries of Q are nonpositive and therefore Q is

under the conditions of Proposition 2.1.

With this notation, it is clear that (3.1) can be written as

QuÄ $ 0

If we prove that Q is monotone, then we have that uÄ 5 (u (t1), . . . , u (tp))
T

$ 0 and we can apply Lemma 3.1.

It is easily seen that the s 3 s principal minor of Q is

Ms(Q) 5
1

1 2 e 2 l T 1 1 2 &
s

k 5 1
cke

2 l T 2 , s 5 1, 2, . . . , p

It is positive if and only if P s
k 5 1 ck , e l T since l . 0. Now, suppose that

ck . 1, k 5 1, . . . , p. It follows that all the principal minors of Q are positive
if and only if det(Q) 5 Mp(Q) . 0, and this is equivalent to the condition

&
p

k 5 1
ck , e l T

Now, we can use Lemma 3.1 to obtain that u (t) $ 0, t P J. Thus, we have

just proved the following result.

Theorem 3.1. Consider the problem (LP) with l . 0, s $ 0 in J, ck .
1, k 5 1, 2, . . ., p, m # 0, and P p

k 5 1 cke
2 l T . 1. Then u (t) $ 0, t P J.

Remark 3.2. Note that the sign of l is a crucial factor to prove the result

of Theorem 3.1. If one tries to generalize this result to the case l , 0, then

it is not possible to employ a similar method.

The result of Theorem 3.1 is weaker than the conclusion of Theorem

2.3 due to the conditions imposed on the constants ck , k 5 1, . . . , p. We

include it in this paper because with it, it is easy to see that, for l . 0, the

condition P p
k 5 1 cke

2 l T , 1 is also necessary for the operator (L 1 l I ) to be
inverse positive (see Theorem 3.1 in Liz and Nieto, 1998).

Theorem 3.2. Let l . 0. The operator (L 1 l I ) is inverse positive in

D (L) if and only if P p
k 5 1 cke

2 l T , 1.

In view of this and Theorem 2.2, it is clear that the meaningful factor

to set up the sign of a solution of (LP) is the sign of P p
k 5 1 cke

2 l T 2 1.
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4. MAIN RESULT

We present a new maximum principle for (LP) which depends only on

the sign of

&
p

k 5 1
cke

2 l T 2 1 (4.1)

Note that in this case the sign of l is not important (compare with

Theorems 2.1 and 3.1).

Theorem 4.1. Consider the problem (LP) with ck . 0, k 5 1, . . . , p:
1. If s $ 0, and m $ 0, then

5 &
p

k 5 1
cke

2 l T , 1 Þ u $ 0

&
p

k 5 1
cke

2 l T . 1 Þ u $ 0

2. If s # 0, and m # 0, then

5 &
p

k 5 1
cke

2 l T , 1 Þ u # 0

&
p

k 5 1
cke

2 l T . 1 Þ u $ 0

Proof. We present only the proof of part 1, since the justification of part
2 is analogous.

By Lemma 2.1, if u P PC1(J ) is solution of (LP), then u satisfies

u (t) $ u (0) &
{k:tk , t}

cke
2 l t, " t P J (4.2)

We contemplate two different cases depending on the sign of (4.1):

(i) P p
k 5 1 cke

2 l T , 1. By (4.2), it is sufficient to prove that u (0) $ 0. If

u (0) , 0, we obtain that

u (0) $ u (T ) $ u (0) &
p

k 5 1
cke

2 l T . u (0)

which is a contradiction.
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(ii) P p
k 5 1 cke

2 l T . 1. Hence, u (0) # 0.

To see that u # 0 on J, suppose that there exists s P J such that u (s)
. 0. If s 5 tj for some j P {1, . . . , p}, then u (s 2 ) . 0 and u (s +) . 0. By
Lemma 2.1, it follows that

u (t) $ u (s) &
{k:s, tk , t}

cke
2 l (t 2 s), " t . s

In particular, for t 5 T we have

u (T) $ u (s) &
{k:s , tk}

cke
2 l (T 2 s) . 0

This proves that u (T ) . 0, and in consequence,

u (T ) . u (0)

which is imposible since m # 0. n

We obtain the following consequence, which generalizes Theorem 3.2

Corollary 4.1 The operator (L 1 l I ) is inverse positive in D (L) if and
only if P p

k 5 1 cke
2 l T , 1.

It is easy to generalize Theorem 4.1 to the following problem

(P) 5
u8(t) 1 l u (t) 5 s (t), t Þ tk ,t P J 5 [0, T ]

u (t 1
k ) 5 Ik(u (tk))

u (0) 5 u (T ) 1 m

where l , m P R , 0 5 t0 , t1 , . . . , tp , tp 1 1 5 T, and Ik: R ® R , k 5
1, . . . , p, satisfy that there exist constants ck . 0, k 5 1, . . . , p, such that either

Ik(x) $ ckx, x P R (4.3)

or

Ik(x) # ckx, x P R (4.4)

Thus, we have

Theorem 4.2. Consider the problem (P):

1. If s $ 0, m $ 0, and (4.3) holds, then

5 &
p

k 5 1
cke

2 l T , 1 Þ u $ 0

&
p

k 5 1
cke

2 l T . 1 Þ u # 0

2. If s # 0, m # 0, and (4.4) holds, then
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5 &
p

k 5 1
cke

2 l T , 1 Þ u # 0

&
p

k 5 1
cke

2 l T . 1 Þ u $ 0
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